Speech recognition in a noisy car environment based on LP of the one-sided autocorrelation sequence and robust similarity measuring techniques
نویسندگان
چکیده
The performance of the existing speech recognition systems degrades rapidly in the presence of background noise. A novel representation of the speech signal, which is based on Linear Prediction of the One-Sided Autocorrelation sequence (OSALPC), has shown to be attractive for noisy speech recognition because of both its high recognition performance with respect to the conventional LPC in severe conditions of additive white noise and its computational simplicity. The aim of this work is twofold: (1) to show that OSALPC also achieves a good performance in a case of real noisy speech (in a car environment), and (2) to explore its combination with several robust similarity measuring techniques, showing that its performance improves by using cepstral liftering, dynamic features and multilabeling. R&urn6 Les performances des systkmes actuels de reconnaissance de parole se dCgradent rapidement en prksence de bruit. Une nouvelle reprksentation du signal de parole, basee sur la p&diction lintaire de sCquence d'autocorr6lation unilat&ale (One-Sided Autocorrelation Linear Prediction: OSALPC), s'est av&6e &tre inGressante pour la reconnaissance de la parole bruitie, B la fois pour ses bonnes performances (par rapport au codage LPC conventionnel) dans des conditions diffciles de bruit blanc additif et pour sa simplicid de calcul. Le but du travail pr&ent6 dans cet article est double: (1) il s'agit de montrer que OSALPC foumit Cgalement de bonnes performances pour de la parole bruitie en contexte r6el d'usage (en voiture), et (2) d'explorer sa combinaison avec diverses techniques robustes de mesure de similar@ en montrant que ses performances s'amCliorent en utilisant une ponderation cepstrale, des indices dynamiques et l'itiquetage multiple.
منابع مشابه
Speech recognition in noisy car environment based on OSALPC representation and robust similarity measuring techniques
The performance of the existing speech recognition systems degrades rapidly in the presence of background noise. The OSALPC (One-sided Autocorrelation Linear Predictive Coding) representation of the speech signal has shown to be attractive for speech recognition because of its simplicity and its high recognition performance with respect to the standard LPC in severe conditions of additive white...
متن کاملOn the use of filter-bank energies driven from the autocorrelation sequence for noisy speech recognition
The OSA-LP (One-Sided Autocorrelation LP) representation of speech signal has shown to be attractive for noisy speech recognition because of both its high recognition performance with respect to the conventional LP in severe conditions of additive broad-band noise and its computational simplicity. However, the mel-cepstrum representation, which comes from a filter bank (FB) analysis, has become...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملLinear Prediction of the One-Sided Autocorrelation Sequence for Noisy Speech Recognition [Correspond - Speech and Audio Processing, IEEE Transactions on
The aim of this correspondence is to present a robust representation of speech based on AR modeling of the causal part of the autocorrelation sequence. In noisy speech recognition, this new representation achieves better results than several other related techniques.
متن کاملA Comparative Study of Techniques for Hmm-based Speech Recognition in Noisy Car Environment
The performance of existing speech recognition systems degrades rapidly in the presence of background noise when training and testing cannot be done under the same ambient conditions. The aim of this paper is to report the application of several robust techniques on a system based on the HMM (Hidden Markov Models) and VQ (Vector Quantization) approaches for speech recognition in noisy car envir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Speech Communication
دوره 21 شماره
صفحات -
تاریخ انتشار 1997